
Leveraging LLMs for SQL Generation in
Computational Biology

Raj Janardhan, Colin Naughton, Jeff Kramer, Saikanam Joaddar Siam

1 Abstract

Advancements in Large Language Models (LLMs) have revolutionized automatic code generation
and provide opportunities for database management. This project explores the use of LLM agents
for generating SQL queries, presenting an intuitive method for naive users to interact with complex
databases. We fine-tune models, such as Llama-2-7B and Mistral-7B, using Gretel AI’s text-to-SQL
dataset and employ chain-of-thought prompt engineering to produce a SQL agent that generates
accurate, concise SQL queries spanning multiple tables of a fake company’s MySQL database[3-
5]. We evaluate our agent using metrics including the query compilation accuracy, query output
accuracy, and query verbosity. Results show that the combination of prompt engineering and fine-
tuning produces SQL agents with superior evaluation metrics than agents produced using either
method alone. Our lightweight, fine-tuned SQL agent can translate complex user questions into
concise, accurate queries and serves as a useful database tool for non-technical users. In terms of
applications in computational biology, medical records and databases, such as the AoU database,
hold critical information that can be hard to decipher. Creating domain-specific agents for SQL
generation can help in the space of biology due to its ability to ease data collection and aggregation.

2 Introduction

Interactions between users and databases are frequently hindered by lack of technical understand-
ing of Structured Query Language, or SQL[7]. The complexity of SQL results in a steep learning
curve to achieve even moderate levels of understanding and serves as a gap between databases and
users. Advancements in LLMs have established an agent-based framework for bridging this gap
through prompt engineering and models fine-tuned on large-scale SQL datasets.

This project investigates the use of LLMs as SQL agents to facilitate user-database interactions.
By using lightweight models such as Llama-2-7B and Mistral-7B finetuned on a specialized SQL
data set, we aimed to create a tool to allow non-technical users to easily interact with complex
databases. Our approach leverages Chain-of-Thought prompt engineering coupled with fine tuning
techniques to optimize our agent’s ability to produce accurate, concise SQL queries given a user’s
question. Our resulting SQL agent provides an intuitive way for users to interact with complex
databases without requiring any knowledge of SQL.

3 Related Work

The use of LLMs to interact with databases is heavily researched. Recent work has shown the ben-
efit of combining pre-trained language models focused on SQL query generation with LLMs such as
chatGPT to produce more accurate queries than either alone (1). Other work has made progress in
this area by creating graph representations of databases and queries, creating linkages between the
query and data schema nodes, and passing info about these linkages as part of a SQL-generating

1



LLM prompt (2).

Recent advancements in LLMs have significantly impacted code generation and debugging, as it
is demonstrated by the study in [4]. The study introduced the concept of Self-Debugging, where
LLMs debug their own code without human feedback using a method known as rubber duck de-
bugging. This approach has shown good improvements in code generation benchmarks including
text-to-SQL tasks on the Spider dataset.

The integration of LLMs with database systems has been further explored to improve user in-
teractions with databases. The paper titled ”DB-GPT: Empowering Database Interactions with
Private Large Language Models” [5] presents a system that utilizes LLMs to interpret natural
language queries and generate SQL queries. The methodology here leverages a novel retrieval
augmented generation knowledge system paired with an adaptive learning mechanism. This work
improves the intuitiveness and security of database interactions.

Various approaches have been proposed to bridge the gap between users and databases. The work
presented in [6] talks about a multitask pretraining framework that enhances the performance of
LLMs in generating SQL by incorporating context information from database schemas. Further-
more, a comparative study titled ”Battle of the Large Language Models: Dolly vs LLaMA vs
Vicuna vs Bard vs ChatGPT - A Text-to-SQL Parsing Comparison” [7] evaluates the performance
of various LLMs in parsing Text-to-SQL. This work specially compares the gap between current
open source and commercial models when it comes to text to SQL generation.

The integration of reasoning paired with action in LLMs for database interactions has also been ana-
lyzed. The paper in [8] introduces a dataset for long-form database question answering, challenging
LLMs to generate and reason with multiple SQL queries. This study identifies key bottlenecks in
planning and query generation and proposes a multi-agent evaluation framework to enhance the
precision of evaluations.

When it comes to the realm of SQL equivalence reasoning, a study [9] presents a new frame-
work based on U-semiring semantics, which improves the modeling of SQL features and enhances
the capability of automated query equivalence checking. By using SMT solvers as the reasoning
engine, this approach offers a more robust solution for real-world SQL queries.

Our work builds upon these previous studies by looking at the use of LLMs as SQL agents to facili-
tate user-database interactions. We leverage lightweight models such as Llama-2-7B and Mistral-7B
to create an agent capable of producing accurate and concise SQL queries.

4 Data

Initial iterations of the project used OpenAI’s API, however, due to restrictions within the AoU
program on transferring private health information, a transition to a publicly accessible database
was deemed necessary. The Cancer Genome Atlas (TCGA) was identified as an appropriate al-
ternative among publicly accessible BigQuery databases. BigQuery databases are structured in
such a way that the columns of each table can have extensive descriptions associated with them.
Within the context of TCGA, the large number of tables coupled with the extensive, and somewhat
redundant column descriptions resulted in over 50,000 tokens being generated from a simple query

2



of the TCGA database schema. The excessive number of tokens posed a challenge as the count
would be too large for the smaller models, we ultimately aimed to implement in addition to being
costly if implemented using OpenAI’s API.

While extensive column metadata for the TCGA database was seemingly beneficial, it introduces
complexities that were not fully appreciated at project outset. These challenges necessitated a
simpler approach, thus we opted to use MySQL databases as an alternative. A local MYSQL
database originally developed for the textbook Fundamentals of Database Systems by Elmasri and
Navathe, and used in Georgia Tech’s CS4400 course, appeared to be optimal for development pur-
poses. Because the database was used for other course work, it also came with a large set of
pre-made questions and their expected outputs. These expected outputs are incorporated into an
“autograding” script, facilitating the evaluation of queries produced by our model. Additionally,
many of the questions require queries that include multiple tables within the databases, parallel to
the complexity we expect with queries to larger biological databases, such as AoU.

5 Methods

To tackle this problem of domain-specific generation, there were three main approaches that were
taken: prompt engineering on powerful pre-trained, finetuning models, and a conjunction of two
types of finetuning.

5.1 Prompt Engineering

As models continue to grow in power and training ability, many of the state-of-the-art models,
such as Llama, GPT, and Mistral have immense prowess even in domain-specific fields, such as
SQL generation. Prompt engineering methods, such as Chain-of-Thought, have shown promise
especially in layered and more difficult tasks[6]. In terms of methods, we use Chain-of-Thought
on Llama-2-7B and Mistral-7B. The reason we used Chain-of-Thought specifically is two-fold. The
first is the propensity for more long-form tasks. When looking at the types of queries that are
used in this specific domain, many of them are quite long-form and would most likely take multiple
steps to manually come up with. These types of scenarios have shown great promise under Chain-
of-Thought Prompting. Additionally, one of the benefits to SQL generation is the introduction
of structure. SQL queries are very structured in how they are generated and have a very specific
format, and Chain-of-Thought has shown promise in that realm. Additionally, there are two main
benefits to integrating Prompt Engineering into a solution. The first is leveraging the power of pre-
trained models. Companies like Meta, OpenAI, and more, have copious amounts of data and power,
so leveraging this in our own scenarios is quite helpful. Additionally, the computational cost is quite
minimal. By simply integrating changes within the actual prompt, the cost of generation becomes
significantly lower, as no fine-tuning, training, or any computational cost other than loading and
querying the model is incurred.

5.2 Finetuned Models

There are two types of finetuning that we implement. The first is instruction tuning. When doing
qualitative analysis in the initial exploratory phase of the project, one part of the generation that
language models struggled with was with the actual schema. Passing in the schema in an effective
way for the language model to understand seemed to be one of the most pressing problems. To
counter that, we implement instruction tuning, so that the models have a central way to understand

3



the schema. The general structure of the schema passed in was to have the first line be the name
of the table, and each of the following lines to be each of the keys in a database, their type,
and if they are a primary key, etc. The second type of finetuning was the traditional finetuning.
Recently, Gretel AI had released the largest text-to-SQL dataset, where the dataset included the
schema, general features of the dataset, the natural language description, and the actual SQL
generation. Using this dataset, due to its diversity in types of models, language descriptions, and
queries, we decided to use this specific dataset. For both types of finetuning, we used Llama-
2 7B for finetuning, quantized to 4-bit, to help fulfill computational constraints. In terms of the
actual finetuning process, we used qLORA, as full-finetuning and normal LORA presented problems
computationally.

5.3 Multi-step Finetuning

The main model that is introduced is a combination of the above two finetuning models. The first
step is to do base qLORA finetuning on the Gretel AI SQL dataset. That dataset’s diversity allows
for learning of the structure of SQL along with base understandings of the fastest ways to learn
efficient commands. Having this as the first step allows the new updated model to get a more
nuanced understanding of SQL itself. The main issue then lies in how to pass on more domain-
specific knowledge and how to process the specific schema of the databases in our problem space.
To attack that, we implement instruction tuning on the model after already finetuning it on the
Gretel AI dataset. Having the model instruction tune over our specific schemas allows the model to
be more nuanced and accurate in our problem space. Additionally, since the two different types of
finetuning provide different benefits to the model, we posit that the benefits will compound when
both methods are done in conjunction.

6 Experiments

In terms of evaluation, there is no singular metric that can capture the effectiveness of a language
models’ generation of a SQL query. The first thing to calculate is the actual generation accuracy.
Generation accuracy simply just takes a generation and the actual SQL database that the model
was querying. The generated query is then passed into the database, and if it succeeds, it counts
as a successful query for this metric, if it does not generate an error. If the generation causes an
error, due to a misspelling, incorrect SQL structure, etc., it counts as a failed query. The final
metric is calculated as successful queries divided by total queries. This metric is important because
we want to get a general idea of how good a model is at learning the general SQL structure based
on the schema. Especially if the model is not as successful, this metric helps identify which parts
of the problem that the model is failing at. The second main evaluation metric is the accuracy of
the generation itself. Let’s say we have a prompt and an expected return from the database. If
the generated query when passed into the database results in the same return, it will be deemed
a “successful” query. This pure accuracy is calculated as successful queries divided by the total
number of queries. The final main metric that is calculated is adjusted query verbosity. When
a natural language query is passed in, there are often many ways to generate a specific targeted
dataset. These queries can be of varying lengths, and we want to make sure that the language
model is not consistently extra verbose. With that, we come up with a metric, that is slightly
based on BLEU, where we penalize longer queries. We use this exponential decay formula to have
lower values for correct queries that are longer. If a query results in an incorrect response, it has
a score of 0. This score is averaged for each model and compared, along with just the relative
distribution.

4



The query penalization function f(Q) is defined as:

f(Q) =

{
e

−Length of Generated Query
Length of Ground-Truth Query

+1
if query Q is correct

0 if query Q is incorrect

7 Discussion

7.1 Quantitative Analysis

Figure 1: Cosine Similarity

7.1.1 Prompt Engineering

In terms of the quantitative analysis of prompt engineering, it was consistently the worst performing
approach. It had the least cosine similarity between the response and the generated query. This
indicates a lack of understanding of the prompt and SQL structure, comparatively. Additionally,
the compilation accuracy and actual accuracy are quite low, indicating that the model does not
have the greatest grasp on SQL itself. Especially with a low score on the compilation accuracy
front, the model is not generating valid SQL queries. Since the model does not generate valid SQL
queries most of the time, the query length penalization score does not have much impact, as it is
quite low.

7.1.2 Instruction-Tuned Model

In terms of the instruction-tuning, there were varying levels of success for each different type of
metric. There was a definite increase in the cosine similarity, indicating a more accurate model,
generating more topically relevant queries. Additionally, the compilation accuracy saw a monumen-
tal increase. This increase indicated the instruction tuning profoundly impacting the knowledge
attainment of the SQL structure in general. However, the impact is not profound on the actual
accuracy and query penalization, indicating a lack of knowledge of the actual schema itself.

5



Figure 2: Accuracy

7.1.3 Dataset-Tuned Model

In terms of the dataset-tuned model, there was more profound impact on both the actual accuracy
and query penalization. Both the accuracy and query penalization score saw sharp increases in this
new model. This indicates that the model not only is getting a greater knowledge base in under-
standing SQL structure and queries, but also understanding the schema passed in. Additionally,
the query penalization score indicates that the solutions that are generated by the model are either
optimal or close to the optimal query to generate the resulting table.

7.1.4 Multi-Tuned Model

In terms of the multi-tuned solution, this was the most accurate model on all fronts. First, the
calibration accuracy was higher than any of the other models, which is an indication of the new
model’s knowledge of SQL and generation of specific queries. Also, the query penalization score
shows that all generations of this model’s queries are close to optimal. This indicates that not only
does the model have knowledge of the SQL structure and the database from the specific schema,
but it also has knowledge of the optimal queries to generate specific tables and map to specific
natural language queries.

7.2 Qualitative Analysis

7.2.1 Prompt Engineering

When investigating the outputs of the prompt engineered of both open-source models tested, the
performance was much worse than the alternative methods. The responses were often filled with
large explanations, discussing why the SQL query was outputted, and a step-by-step explanation.
Additionally, even when the SQL query was extracted from the entire response, with the explanation
removed, the metrics did not improve drastically. Qualitative analysis of some of the responses gave
us two main observations regarding the model. The first is the lack of understanding of the database
from its schema. The language model would often hallucinate and add extra keys, table names,
etc. The second main observation is that the language model did not have a great understanding

6



of SQL itself. The model would often start queries with words other than SELECT, and would
invent commands, that would invalidate a wide variety of SQL rules.

Figure 3: Compilation Accuracy

7.2.2 Instruction-Tuned Model

Instruction-Tuning showed measurable improvements over the baseline and prompt engineering
approaches. The first main observation was the lack of explanation text or given text. When tuned
in to instructions, the language models became a lot more used to returning queries that were
consistent. Even when the language model would output queries that were wrong in theory, most
of the issues would not be due to an apparent lack of understanding of SQL, but rather a lack of
understanding of the schema itself.

7.2.3 Dataset-Tuned Model

Dataset-Tuning provided more benefits overall performance-wise compared to both instruction-
tuning and prompt engineering. After finetuning the model with the dataset, the diversity of the
dataset seems to be quite helpful. Qualitatively, the model’s generations after tuning were a lot
more effective on some of the more complicated tasks. The finetuned model looked to have a much
greater grasp of what each of the databases had and how to do some of the aggregations and other
complicated queries. Overall, it seemed to have a greater grasp of the SQL structure as well, which
can be attributed to the diversity of the dataset.

7.2.4 Multi-Tuned Model

Multi-Tuning the model through two phases provided comprehensibly the best performance metrics.
Qualitatively, looking through the generations of this fine-tuned model, it is indicative that this
model has a grasp over both the general SQL structure and understanding the schema when it is
passed in. A great indication of the model’s performance is its ability to either be fully correct or
comparatively quite close and the most difficult queries, that would often require multiple steps for
a human annotator to decipher.

7



Figure 4: Distance Penalization

8 Conclusion

When looking at the specific issue of SQL generation, especially through the lens of domain-specific
generations, there is a clear gap in what a human expert can do and what a language model can do.
SQL generation is especially hard for two main reasons: an understanding of a new schema at every
iteration and a general understanding of the SQL structure. At the beginning, we attempted to
leverage some of the most powerful pre-trained models with possible prompt engineering strategies,
such as Chain-of-Thought, but these methods did not seem to enhance the model’s understanding.
The team then attempted strategies that leveraged finetuning the model, both on the instruction
front and through comprehensive natural language to SQL query datasets. Both types of tuning
showed improvements in understanding SQL structure and the schema themselves. The novel
solution that is introduced by the paper is this 2-pronged finetuning approach that finetunes the
model on both instruction data and a pre-defined dataset to provide generations that are valid
in SQL and can follow the natural language query. In the future, identifying specific types of
schemas and using a Mixture-of-Experts approach with different types of databases and schemas
could provide more optimal performance with marginal computational differences. Additionally, our
approach was originally designed to be tested on biological databases, but due to time and privacy
constraints, we were constrained to other pieces of data. For future work, we would continue to
test this in the space of biology to test the effectiveness of our approach in a more domain-specific
way.

9 Contributions

Raj: Worked on the instruction-tuning and finetuning of the model, while also implementing prompt
engineering and all of the evaluation metrics. Additionally, worked on cleaning the dataset.

Colin: Worked on acquiring and initial querying of the TCGA BigQuery datasets and initial agent
implementations, and also supplied and formatted the dataset used for testing.

Link to Github: https://github.com/Naughtoncolin/AoUagent/tree/master

8

https://github.com/Naughtoncolin/AoU_agent/tree/master


10 References

[1] Gu, Zihui. Interleaving Pre-Trained Language Models and Large Language Models for Zero-Shot
NL2SQL Generation, arxiv.org/pdf/2306.08891.pdf. Accessed 29 Apr. 2024.

[2] Zhang, Qinggang, et al. “Structure Guided Large Language Model for SQL Generation.”
arXiv.Org, 27 Mar. 2024, arxiv.org/abs/2402.13284.

[3] Touvron, Hugo, et al. “Llama 2: Open Foundation and Fine-Tuned Chat Models.” arXiv.Org,
19 July 2023, arxiv.org/abs/2307.09288.

[4] Jiang, Albert Q., et al. “Mistral 7B.” arXiv.Org, 10 Oct. 2023, arxiv.org/abs/2310.06825.
[5] Meyer, Yev. “Introducing World’s Largest Synthetic Open-Source Text-to-SQL Dataset.”

RSS, Gretel.ai, 4 Apr. 2024, gretel.ai/blog/synthetic-text-to-sql-dataset.
[6] Wei, Jason, et al. “Chain-of-Thought Prompting Elicits Reasoning in Large Language

Models.” arXiv.Org, 10 Jan. 2023, arxiv.org/abs/2201.11903.
[7] Querying Large Language Models with SQL, arxiv.org/pdf/2304.00472.pdf. Accessed 29

Apr. 2024.

9


	Abstract
	Introduction
	Related Work
	Data
	Methods
	Prompt Engineering
	Finetuned Models
	Multi-step Finetuning

	Experiments
	Discussion
	Quantitative Analysis
	Prompt Engineering
	Instruction-Tuned Model
	Dataset-Tuned Model
	Multi-Tuned Model

	Qualitative Analysis
	Prompt Engineering
	Instruction-Tuned Model
	Dataset-Tuned Model
	Multi-Tuned Model


	Conclusion
	Contributions
	References

